Technical aspect of quantification and measurement of BRS

ONSE Medical Inc.

Seoul, South Korea +82 2 508 0123

http://www.onsemedical.co.kr

CONTENTS

- Finapres products and technologies
- 2 BRS Measurement methods

BRS Measurement in Finapres devices

Finapres Products and Technologies

Non-invasive, Continuous, Beat-to-beat Blood pressure monitoring device

VALIDATED FINAPRES® TECHNOLOGY

more than 30 years of proven reliability attested by leading researchers and clinicians

Finapres Products and Technologies

Volume-clamp method

What BRS is.

■ Baroreflex

The <u>baroreflex</u> or <u>baroreceptor reflex</u> is one of the body's homeostatic mechanisms for maintaining blood pressure. It provides a negative feedback loop in which an elevated blood pressure reflexively causes heart rate to decrease therefore causing blood pressure to decrease; likewise, decreased blood pressure activates the baroreflex, causing heart rate to increase thus causing an increase in blood pressure. ¹⁾

■ Baroreflex Sensitivity

It is the amount of response in heart beat interval to a change in blood pressure, expressed in ms/mmHg. ²⁾

■ Evoked BRS

; coined as a term for the regression of pulse interval on simultaneous blood pressure upon an injection of Phenylephrine (Vasoconstrictor). ³⁾

- (1) Injections of vasoconstrictor or vasodilator agents
- (2) Neck suction
- (3) Change from supine to standing

The results were obtained from evoked, stimulus response experiments.

However, blood pressure and pulse interval changes also occur **spontaneously**, thus methods were developed to estimate "BRS" from such spontaneous blood pressure - pulse interval variability. ²⁾

- Spontaneous BRS
- (1) Time domain Sequence method
- (2) Frequency domain Spectral method
- (3) Cross-Correlation xBRS

Spontaneous BRS

- (1) Time domain, sequence method 4)
- 3 or more consecutive beats
- Progressive increases/decreases in systolic blood pressure
- progressive lengthening/shortening in RR interval.
- Systolic blood pressure change
 - : 1mmHg in a sequence
- RR interval change
 - : 6 ms in a sequence
- Computing the slope of the regression line relating changes in systolic pressure to changes in RR interval.
- All computed slopes are finally averaged to obtain the BRS.

- Spontaneous BRS
- (2) Frequency domain, spectral method⁴⁾
- Each spontaneous oscillation in blood pressure elicits an oscillation at the same frequency in RR interval by the effect of arterial baroreflex activity.
- Two main oscillations are usually considered:
- One centered around 0.1 Hz, within the low-frequency (LF) band (0.04 ÷ 0.15 Hz),
- Associated with respiratory activity within the high-frequency (HF) band (0.15 \div 0.40 Hz).
- Therefore, these methods allow a clear definition of the oscillatory components that contribute to BRS measurement.

- Cross-Correlation BRS (xBRS) ⁶⁾
- Take beat-to-beat pressure (p) and pulse interval (I).
- 2. 10s duration windows of simultaneous SYS and IBI are interpolated and resampled at 1s intervals.

- Cross-Correlation BRS (xBRS)
- 3. Assemble in 15s arrays.
- 4. Cross-correlate p [1...10] with I [1...10]. $(\tau=0)$
- 5. Repeat this for p [1...10] and I [2...11] and so forth.
- 6. Until p [1...10] and I [6...15] is reached. $(\tau=5)$

- Cross-Correlation BRS (xBRS)
- 7. Select result with highest coefficient of determination, r²

- 8. If P<0.01 store BRS/r of this result.
- 9. Timed at instant of middle position.
- 10. Increment time by 1s,
- 11. Repeat.

Time-domain cross-correlation baroreflex sensitivity: performance on the EUROBAVAR data set

Stand	EUROBAVAR						
	seq	α-L	α-Н	sBRS	N-est	xBRS	N-est
mean		6.7		6.8	76	6.2	213
SD				3.9	78	3.9	106
min				1.2	1	0.8	11
max				15.7	279	16.3	423
N-sbj		(20)		21	21	21	21

BRS in stand position.

The BAVAR study pools the results of the sequential and the two spectral versions, (20) in all, since they are similar.

xBRS versus other time-sequential methods:

- Variance reduced by 50%
- More measurements per unit of time
- More equally distributed over time
- No thresholds present or needed

Patient	sBF	RS	xBRS		
Patient	m(s)	N-est	m(s)	N-est	
b005s	1.2	1	0.8(0.3)	46	
ь0051	2.1(0.6)	2	2.3(0.8)	83	
b010s	2.5	1	1.3(0.4)	11	
b0101	2.2(0.7)	3	2.0(1.8)	18	

BRS on two patients with impaired baroreflex.

Patient b010 with a recent heart transplant and b005 with diabetic autonomic neuropathy exhibit very small values for BRS.


```
EXAMPLE-PRO-BRACHIAL_2007-01-19_16.55.42_BRS.txt - 메모장
                 서식(O) 보기(V) 도움말(H)
BeatScope Easy - v02.10 build 004
ldentification;Identification;Age (vrs);Height (cm);Weight (kg);Gender;Procedure;Model number
EXAMPLE-PRO-BRACHIAL;Finapres Medical Systems;33;189;105;Male;example brachial;9715
Reconstructed pressure level:
brachial
Time(s)
              ;BRS (ms/mmHg);MP (mmHg);MI (ms);tau (s);
                                                                  R^2;dP (mmHg);dI (ms);
16:57:15.360;
                         2.82;
                                  155.40;
                                                                            53.20;
                                               656;
                                                               0.6787;
                                                                                       136;
                                                                           55.71;
55.71;
16:57:16.360;
                         3.00;
                                  153.73;
                                               649;
                                                              0.7368;
                                                                                       144;
16:57:17.360;
                         2.91;
                                  152.86;
                                               645;
                                                              0.8105;
                                                                                       144;
16:57:17.860;
                         2.76;
                                  149.93;
                                               645;
                                                              0.7310;
                                                                            58.20;
                                                                                       144;
                                  143.80;
16:57:18.360;
                         4.02;
                                               645;
                                                                            30.57;
                                                               0.8104;
                                                                                       144;
16:57:18.860;
                         4.05;
                                  140.51;
                                               645;
                                                              0.7729;
                                                                            32.69;
                                                                                       144;
                                                                                       127;
16:57:41.360;
                         6.05;
                                  139.01;
                                                                           17.62;
                                               665;
                                                               0.8594;
                                                                           29.43;
29.86;
29.86;
29.86;
                                  141.50;
143.57;
                                                                                       204;
204;
16:57:42,360;
                         6.75;
                                               681;
                                                               0.9315;
                                               697;
                                                               0.9669;
16:57:43.360;
                         6.46;
                                  144.80;
                                                                                       204;
204;
16:57:44.360;
                         6.49;
                                                               0.9670;
                                               705;
16:57:45.360;
                                  143.97;
                         6.31;
                                               705;
                                                              0.9511;
                         6.21;
                                                                           29.86;
29.86;
                                                                                       204;
                                  143,17;
                                               705;
                                                               0.9235;
16:57:46.360;
16:57:47.360;
                                  142.93;
                                                               0.9442;
                                                                                       204;
                                               708;
                         6.13;
                                                                           29.86;
27.66;
                                                                                       204;
174;
                                  143.52;
16:57:48.360;
                         6.02;
                                               715;
                                                               0.9301;
16:57:49,360;
                         5.37;
                                  144.88;
                                                               0.9419;
                                               726;
                                                                           22.87;
16:57:50,360;
16:57:51,360;
                                  146.47;
                                                              0.9491;
                                                                                       113;
                         4.78;
                                               736;
                         4.86;
                                  146.32;
                                               733;
                                                               0.9180;
                                                                            22.87;
                                                                                       113;
16:57:52.360;
16:57:53.360;
                         4,29;
                                  144.23;
                                               722;
                                                              0.9139;
                                                                            22.87;
                                                                                       100;
                         3.37;
                                  141.95;
                                               712;
                                                              0.7931;
                                                                            13.57;
                                                                                        49;
16:57:54.360;
                         3.18;
                                  140.73;
                                                              0.6848;
                                                                            11.18;
                                                                                        37;
                                               708;
16:57:54.860;
                         2.84;
                                  140.35;
                                               708;
                                                              0.7153;
                                                                            13.99;
                                                                                        37;
                                                                            15.31;
16:57:55.860;
                         2.54;
                                  139.93;
                                               708;
                                                              0.6980;
                                                                                        37;
                         2.54;
7.48;
16:57:56.860;
                                  139.55;
                                                               0.6032;
                                                                            15.31;
                                                                                        37;
                                               710;
16:58:05.360;
                                  132.15;
                                                              0.7326;
                                                                             9.68;
                                               712;
16:58:07.360;
                        10.78;
                                  131.85;
131.65;
                                               721;
                                                               0.5923;
                                                                             9.68;
                                                                                       111;
                                                              0.6459;
16:58:08.360;
                        10.90;
                                               722;
                                                                             9.68;
                                                                                       111;
16:58:09,360;
                                  131.36;
                                                                            12.58;
12.77;
                        10.15;
                                               720;
                                                               0.6779;
                                                                                       111;
                                  130.89;
16:58:10.360;
                         9.05;
                                               718;
                                                               0.6643;
                                                                                       111;
16:58:11.360;
                         8.69;
                                  130.85;
                                               722;
                                                               0.7404;
                                                                            12,77;
                                                                                       111;
16:58:12.360;
                         7.72;
                                  131.41;
                                                               0.7638;
                                                                            12,77;
                                                                                       100;
```

References

■ References

- 1. http://en.wikipedia.org/wiki/Baroreflex
- 2. Time-domain cross-correlation baroreflex sensitivity: performance on the EUROBAVAR data set *B.E. Westerhof, J. Gisolf, W.J. Stok, K.H. Wesseling and J.M. Karemaker, J Hypertens 2004 Jul;22(7):1371-80*
- 3. Baroreflex sensitivity, an elusive number *K H Wesseling, 27 August 2002*
- 4. Baroreflex Sensitivity: Measurement and Clinical Implications

 Maria Teresa La Rovere, M.D.,* Gian Domenico Pinna, M.S.,† and Grzegorz Raczak, M.D.

 Annals of Noninvasive ElectrocardiologyVolume 13, Issue 2, 18 APR 2008
- 5. Time versus frequency domain techniques for assessing baroreflex sensitivity
 Pontus B. Perssona, Marco DiRienzob, Paolo Castiglionib, Catherine Ceruttic, Massimo Paganid, Natasa
 Honzikovae, Solange Akselrodf and Gianfranco Paratig
- 6. Cross-Correlation BRS Leaflet.

 Published by Finapres Medical Systems B.V. The Netherlands